7148 measured reflections

 $D \cdots A$

2.988(2)

 $D - H \cdot \cdot \cdot A$

173

 $R_{\rm int} = 0.023$

2612 independent reflections

2352 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4'S)-4'-Ethyl-3',10'-dioxo-3',4',7',8'tetrahydrospiro[1,3-dioxolane-2,6'-1'H,6'H-pyrano[3,4-f]indolizin]-4'-yl N-(1-phenylethyl)carbamate

Yong Bao,^{a,b} Fen-Er Chen^a* and Min-Qin Chen^c

^aDepartment of Chemistry, Fudan University, Shanghai 200433, People's Republic of China, ^bInstitute of Biomedical Science, Fudan University, Shanghai 200433, People's Republic of China, and ^cResearch Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China Correspondence e-mail: rfchen@fudan.edu.cn

Received 19 July 2007; accepted 6 August 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.087; data-to-parameter ratio = 8.6.

The title compound, $C_{24}H_{26}N_2O_7$, is an intermediate in the resolution of a tertiary alcohol using a chiral isocyanate reagent. On the basis of the unchanging *S* configuration of the chiral C atom introduced by the isocyanate reagent, the chiral centre on the tricyclo ring system is shown to adopt an *S* configuration. In the crystal structure, $N-H\cdots O$ hydrogen bonds link the molecules into chains.

Related literature

For related literature, see: Duggan & Imagire (1989); Gibbs *et al.* (1989).

Experimental

Crystal data

	0 -
$C_{24}H_{26}N_2O_7$	V = 1116.4 (3) Å ³
$M_r = 454.47$	Z = 2
Monoclinic, $P2_1$	Mo $K\alpha$ radiation
u = 7.3998 (10) Å	$\mu = 0.10 \text{ mm}^{-1}$
p = 16.383 (2) Å	T = 296 (2) K
= 9.2162 (13) Å	$0.30 \times 0.25 \times 0.20 \text{ mm}$
$\beta = 92.322 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX II CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.971, T_{\rm max} = 0.980$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	1 restraint
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
2612 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
302 parameters	

Table 1

 $D - H \cdot \cdot \cdot A$

Hydrogen-bond geometry (Å, °).

D - H

N2-H2···O6ⁱ 0.88

Symmetry code: (i) x, y, z - 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

 $H \cdot \cdot \cdot A$

2.11

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2220).

References

Bruker (1997). SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Duggan, M. É. & Imagire, J. S. (1989). Synthesis, 2, 131-132.

Gibbs, R. A., Bartels, K., Lee, R. W. K. & Okamura, W. H. (1989). J. Am. Chem. Soc. 111, 3717–3725.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3941 [doi:10.1107/S1600536807038731]

(4'S)-4'-Ethyl-3',10'-dioxo-3',4',7',8'-tetrahydrospiro[1,3-dioxolane-2,6'-1'*H*,6'*H*-pyrano[3,4*f*]indolizin]-4'-yl *N*-(1-phenylethyl)carbamate

Y. Bao, F.-E. Chen and M.-Q. Chen

Comment

The method for resolution of a tertiary alcohol using a chiral isocyanate reagent has been widely applied (Gibbs *et al.*, 1989). The title compound is a key intermediate in the resolution process of alcohol 1 using the (*S*)-isocyanate 2 (Scheme 2).

On the basis of the unchanging *S* configuration of C17, the molecular structure (Figure 1) indicates that the chiral C atom C3 adopts an *S* configuration. The six-membered lactone ring is twisted with an O1/C2/C3/C4 torsion angle of -21.4 (3) °. The pyrrole ring is also twisted, with a N1/C6/C7/C8 torsion angle of 22.3 (2) °. N—H…O hydrogen bonds exist between molecules, linking them into chains along the *c* axis.

Experimental

The (S)-isocyanate 2 (2.0 mmol) was added to a mixture of alcohol 1 (1.0 mmol) and reagent grade CuCl (0.2 mmol) in dry CH_2Cl_2 (12 ml) at room temperature (Scheme 2; Duggan & Imagire, 1989). After stirring for 12 h, the reaction mixture was filtered and the filtrate was diluted with CH_2Cl_2 (20 ml), washed with H_2O (20 ml) and brine (20 ml), dried over MgSO₄ and concentrated. The crude product (0.43 g, 94%) was recrystallized from 2-propanol (31 ml) to yield a white powder (m.p. 485 K). Crystals suitable for X-ray analysis were obtained from ethyl acetate.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å and N—H = 0.88 Å, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. The methyl groups were allowed to rotate about their local threefold axes. In the absence of significant anomalous scattering effects, Friedel pairs have been merged as equivalent data. The absolute structure was assigned on the basis of the unchanging chiral centre C17, originating from the isocyanate reactant.

Figures

Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at 30% probability for non-H atoms.

(4'S)-4'-Ethyl-3',10'-dioxo-3',4',7',8'-tetrahydrospiro[1,3-dioxolane-2,6'- 1'H,6'H-pyrano[3,4-f]indolizin]-4'-yl N-(1-phenylethyl)carbamate

Crystal data	
$C_{24}H_{26}N_2O_7$	$F_{000} = 480$
$M_r = 454.47$	$D_{\rm x} = 1.352 {\rm ~Mg~m^{-3}}$
Monoclinic, P21	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 2722 reflections
<i>a</i> = 7.3998 (10) Å	$\theta = 2.2 - 25.4^{\circ}$
<i>b</i> = 16.383 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 9.2162 (13) Å	T = 296 (2) K
$\beta = 92.322 \ (2)^{\circ}$	Prism, colourless
$V = 1116.4 (3) \text{ Å}^3$	$0.30\times0.25\times0.20~mm$
Z = 2	

Data collection

Bruker SMART APEX II CCD diffractometer	2612 independent reflections
Radiation source: fine-focus sealed tube	2352 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 296(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 9$
$T_{\min} = 0.971, T_{\max} = 0.980$	$k = -18 \rightarrow 21$
7148 measured reflections	$l = -9 \rightarrow 11$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0485P)^2 + 0.0587P]$ where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.034$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.087$	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.06	$\Delta \rho_{\rm min} = -0.13 \ e \ {\rm \AA}^{-3}$

2(12 0 (1	Extinction correction: SHELXL97,
2612 reflections	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
302 parameters	Extinction coefficient: 0.015 (3)
1 restraint	Absolute structure: Friedel pairs merged as equivalent data
Primary atom site location: structure-invariant direct methods	Flack parameter: ?
Secondary atom site location: difference Fourier map	Rogers parameter: ?

Herdre eren site le esti en informed from a sichhermine

Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.9756 (3)	0.86809 (10)	0.37052 (17)	0.0497 (4)
O2	1.0016 (3)	0.90832 (11)	0.14679 (19)	0.0571 (5)
03	0.8961 (2)	0.75590 (10)	0.03780 (15)	0.0361 (3)
O4	0.6197 (2)	0.46524 (11)	0.2027 (2)	0.0518 (4)
O5	0.8933 (2)	0.44686 (10)	0.31575 (17)	0.0438 (4)
O6	0.8228 (2)	0.68765 (11)	0.66980 (16)	0.0445 (4)
07	1.1799 (2)	0.74245 (12)	0.13801 (17)	0.0483 (4)
N1	0.7652 (2)	0.59843 (11)	0.48365 (19)	0.0342 (4)
N2	1.1043 (3)	0.69448 (13)	-0.0887 (2)	0.0429 (5)
H2	1.0138	0.6919	-0.1538	0.043 (7)*
C1	0.9037 (3)	0.81619 (15)	0.4800 (2)	0.0415 (5)
H1A	0.8013	0.8434	0.5212	0.050*
H1B	0.9953	0.8090	0.5573	0.050*
C2	0.9466 (3)	0.85775 (14)	0.2281 (2)	0.0395 (5)
C3	0.8317 (3)	0.78525 (13)	0.1735 (2)	0.0337 (4)
C4	0.8214 (3)	0.71695 (12)	0.2830 (2)	0.0314 (4)
C5	0.7784 (3)	0.63660 (14)	0.2365 (2)	0.0343 (4)
Н5	0.7661	0.6238	0.1383	0.041*
C6	0.7561 (3)	0.57932 (13)	0.3391 (2)	0.0331 (4)
C7	0.7254 (3)	0.48743 (13)	0.3259 (3)	0.0382 (5)
C8	0.6437 (3)	0.46579 (16)	0.4706 (3)	0.0479 (6)
H8A	0.5127	0.4682	0.4625	0.057*
H8B	0.6798	0.4113	0.5012	0.057*

С9	0.7175 (3)	0.52940 (15)	0.5779 (3)	0.0442 (6)
H9A	0.6265	0.5453	0.6454	0.053*
H9B	0.8230	0.5090	0.6323	0.053*
C10	0.8130 (3)	0.67425 (14)	0.5379 (2)	0.0342 (4)
C11	0.8446 (3)	0.73440 (13)	0.4266 (2)	0.0326 (4)
C12	0.9214 (4)	0.43939 (19)	0.1647 (3)	0.0581 (7)
H12A	0.9934	0.3915	0.1447	0.070*
H12B	0.9815	0.4873	0.1281	0.070*
C13	0.7343 (5)	0.4315 (2)	0.0987 (3)	0.0685 (9)
H13A	0.7230	0.4613	0.0078	0.082*
H13B	0.7046	0.3746	0.0804	0.082*
C14	0.6397 (3)	0.81741 (16)	0.1294 (2)	0.0432 (5)
H14A	0.6488	0.8518	0.0444	0.052*
H14B	0.5640	0.7712	0.1018	0.052*
C15	0.5467 (3)	0.86541 (17)	0.2454 (3)	0.0510 (6)
H15A	0.6108	0.9155	0.2638	0.076*
H15B	0.5456	0.8338	0.3330	0.076*
H15C	0.4247	0.8773	0.2127	0.076*
C16	1.0725 (3)	0.73094 (14)	0.0376 (2)	0.0357 (5)
C17	1.2862 (3)	0.66796 (18)	-0.1258 (3)	0.0493 (6)
H17	1.3694	0.7138	-0.1083	0.059*
C18	1.3521 (6)	0.5967 (3)	-0.0323 (3)	0.0880 (13)
H18A	1.2645	0.5535	-0.0383	0.132*
H18B	1.3680	0.6143	0.0668	0.132*
H18C	1.4653	0.5774	-0.0662	0.132*
C19	1.2817 (3)	0.64878 (15)	-0.2861 (2)	0.0378 (5)
C20	1.2066 (3)	0.57611 (15)	-0.3382 (2)	0.0424 (5)
H20	1.1624	0.5383	-0.2732	0.051*
C21	1.1968 (4)	0.55937 (18)	-0.4847 (3)	0.0517 (7)
H21	1.1485	0.5100	-0.5175	0.062*
C22	1.2572 (4)	0.6144 (2)	-0.5813 (3)	0.0611 (8)
H22	1.2488	0.6030	-0.6803	0.073*
C23	1.3300 (4)	0.6861 (2)	-0.5336 (3)	0.0696 (9)
H23	1.3713	0.7237	-0.6003	0.084*
C24	1.3436 (4)	0.70394 (18)	-0.3862 (3)	0.0558 (7)
H24	1.3945	0.7531	-0.3547	0.067*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0722 (12)	0.0424 (9)	0.0346 (8)	-0.0192 (9)	0.0029 (8)	-0.0057 (7)
O2	0.0855 (14)	0.0408 (9)	0.0462 (10)	-0.0161 (10)	0.0177 (9)	-0.0003 (8)
O3	0.0421 (8)	0.0407 (8)	0.0254 (7)	0.0030 (7)	0.0020 (6)	-0.0044 (6)
O4	0.0513 (9)	0.0465 (10)	0.0567 (11)	-0.0033 (8)	-0.0082 (8)	-0.0087 (8)
O5	0.0487 (9)	0.0429 (9)	0.0396 (8)	0.0118 (7)	0.0007 (7)	-0.0048 (7)
O6	0.0530 (9)	0.0532 (10)	0.0274 (8)	0.0067 (8)	-0.0001 (7)	-0.0026(7)
O7	0.0462 (9)	0.0642 (12)	0.0339 (8)	0.0019 (8)	-0.0043 (7)	-0.0097 (8)
N1	0.0365 (9)	0.0356 (10)	0.0306 (9)	0.0042 (8)	0.0044 (7)	0.0025 (7)

N2	0.0400 (10)	0.0571 (13)	0.0313 (9)	0.0084 (9)	-0.0022 (8)	-0.0104 (9)
C1	0.0527 (13)	0.0394 (12)	0.0324 (11)	-0.0061 (11)	0.0010 (10)	-0.0039 (10)
C2	0.0478 (12)	0.0348 (12)	0.0363 (12)	-0.0035 (10)	0.0083 (10)	-0.0043 (10)
C3	0.0405 (11)	0.0331 (10)	0.0274 (10)	0.0012 (9)	0.0020 (8)	-0.0041 (8)
C4	0.0326 (10)	0.0323 (10)	0.0295 (10)	0.0019 (8)	0.0021 (8)	-0.0033 (8)
C5	0.0413 (11)	0.0341 (11)	0.0274 (10)	-0.0003 (9)	-0.0010 (8)	-0.0046 (8)
C6	0.0326 (10)	0.0322 (11)	0.0344 (11)	0.0026 (8)	0.0008 (8)	-0.0044 (9)
C7	0.0394 (11)	0.0310 (11)	0.0441 (13)	0.0014 (9)	0.0010 (9)	0.0002 (9)
C8	0.0508 (13)	0.0394 (13)	0.0545 (15)	0.0010 (11)	0.0133 (11)	0.0048 (11)
C9	0.0528 (14)	0.0399 (12)	0.0408 (13)	0.0058 (11)	0.0130 (10)	0.0095 (10)
C10	0.0339 (10)	0.0393 (11)	0.0295 (10)	0.0065 (9)	0.0019 (8)	-0.0020 (9)
C11	0.0343 (10)	0.0357 (11)	0.0278 (10)	0.0018 (9)	0.0016 (8)	-0.0045 (8)
C12	0.0686 (18)	0.0605 (17)	0.0456 (14)	0.0120 (14)	0.0076 (13)	-0.0118 (13)
C13	0.087 (2)	0.0624 (19)	0.0550 (16)	0.0104 (16)	-0.0080 (15)	-0.0230 (15)
C14	0.0458 (12)	0.0446 (13)	0.0390 (12)	0.0085 (10)	0.0000 (10)	-0.0004 (10)
C15	0.0477 (13)	0.0490 (14)	0.0567 (15)	0.0068 (12)	0.0083 (11)	-0.0009 (12)
C16	0.0439 (11)	0.0357 (11)	0.0276 (10)	0.0011 (9)	0.0021 (9)	-0.0009 (9)
C17	0.0441 (13)	0.0624 (17)	0.0411 (13)	0.0119 (11)	-0.0027 (10)	-0.0115 (12)
C18	0.110 (3)	0.115 (3)	0.0382 (15)	0.065 (3)	-0.0092 (16)	-0.0031 (17)
C19	0.0324 (10)	0.0446 (13)	0.0365 (12)	0.0058 (9)	0.0046 (8)	-0.0024 (10)
C20	0.0445 (12)	0.0438 (13)	0.0390 (12)	0.0037 (10)	0.0025 (10)	0.0011 (10)
C21	0.0482 (14)	0.0552 (15)	0.0512 (15)	0.0099 (12)	-0.0054 (11)	-0.0172 (12)
C22	0.0525 (15)	0.092 (2)	0.0383 (14)	0.0138 (15)	0.0034 (12)	-0.0036 (14)
C23	0.0656 (18)	0.093 (3)	0.0515 (17)	-0.0036 (18)	0.0146 (14)	0.0258 (17)
C24	0.0545 (15)	0.0497 (15)	0.0633 (18)	-0.0088 (12)	0.0033 (13)	0.0010 (13)

Geometric parameters (Å, °)

O1—C2	1.333 (3)	С9—Н9А	0.970
01—C1	1.438 (3)	C9—H9B	0.970
O2—C2	1.199 (3)	C10—C11	1.448 (3)
O3—C16	1.369 (3)	C12—C13	1.495 (5)
O3—C3	1.439 (2)	C12—H12A	0.970
O4—C7	1.400 (3)	C12—H12B	0.970
O4—C13	1.419 (4)	C13—H13A	0.970
O5—C7	1.416 (3)	C13—H13B	0.970
O5—C12	1.421 (3)	C14—C15	1.515 (3)
O6—C10	1.235 (3)	C14—H14A	0.970
O7—C16	1.210 (3)	C14—H14B	0.970
N1—C6	1.368 (3)	C15—H15A	0.960
N1-C10	1.380 (3)	C15—H15B	0.960
N1—C9	1.478 (3)	C15—H15C	0.960
N2-C16	1.337 (3)	C17—C19	1.510 (3)
N2-C17	1.468 (3)	C17—C18	1.519 (4)
N2—H2	0.88	С17—Н17	0.980
C1-C11	1.487 (3)	C18—H18A	0.960
C1—H1A	0.970	C18—H18B	0.960
C1—H1B	0.970	C18—H18C	0.960
C2—C3	1.534 (3)	C19—C24	1.382 (4)

C3—C4	1.511 (3)	C19—C20	1.391 (3)
C3—C14	1.553 (3)	C20—C21	1.377 (3)
C4—C11	1.358 (3)	C20—H20	0.930
C4—C5	1.417 (3)	C21—C22	1.356 (4)
C5—C6	1.347 (3)	C21—H21	0.930
С5—Н5	0.930	C22—C23	1.359 (5)
C6—C7	1.527 (3)	C22—H22	0.930
С7—С8	1.528 (3)	C23—C24	1.390 (4)
C8—C9	1.523 (4)	С23—Н23	0.930
C8—H8A	0.970	C24—H24	0.930
C8—H8B	0.970		
C2—O1—C1	124.53 (18)	O5—C12—C13	103.7 (2)
C16—O3—C3	116.79 (16)	O5-C12-H12A	111.0
C7—O4—C13	108.6 (2)	C13—C12—H12A	111.0
C7—O5—C12	105.57 (19)	O5—C12—H12B	111.0
C6—N1—C10	124.12 (18)	C13—C12—H12B	111.0
C6—N1—C9	113.22 (18)	H12A—C12—H12B	109.0
C10—N1—C9	122.67 (18)	O4—C13—C12	105.1 (2)
C16—N2—C17	122.03 (19)	O4—C13—H13A	110.7
C16—N2—H2	117.3	C12—C13—H13A	110.7
C17—N2—H2	120.3	04—C13—H13B	110.7
01	114.38 (17)	C12—C13—H13B	110.7
01—C1—H1A	108.7	H13A—C13—H13B	108.8
C11—C1—H1A	108.7	C15-C14-C3	115.36 (19)
01—C1—H1B	108 7	C15-C14-H14A	108.4
C_{11} C_{1} H_{1B}	108.7	$C_3 - C_1 4 - H_1 4 A$	108.4
HIA-CI-HIB	107.6	C15-C14-H14B	108.4
02-02-01	118.8 (2)	C3-C14-H14B	108.4
02 - 02 - 01	121.9 (2)	H_{14A} $-C_{14}$ $-H_{14B}$	107.5
01 - 02 - 03	119 10 (18)	C14— $C15$ — $H15A$	109.5
03 - 03 - 04	111 14 (17)	C14— $C15$ — $H15B$	109.5
03 - 03 - 02	110.17(16)	H15A - C15 - H15B	109.5
$C_4 - C_3 - C_2$	113 39 (17)	C14— $C15$ — $H15C$	109.5
03 - 03 - 014	102 54 (16)	$H_{15} - C_{15} - H_{15} C$	109.5
$C_{4} = C_{3} = C_{14}$	102.34(10) 110.84(18)	H15B_C15_H15C	109.5
$C_{1}^{2} = C_{1}^{3} = C_{1}^{14}$	108 18 (18)	0716N2	107.5 127.0(2)
$C_2 = C_3 = C_1 + C_2$	120 59 (19)	07 - 016 - 03	127.0(2) 123.32(19)
$C_{11} - C_{4} - C_{3}$	110.16 (18)	N_{2} C_{16} O_{3}	123.32(17) 109.65(18)
$C_{11} = C_{11} = C_{11}$	120.17 (18)	N2 C17 C19	107.03(18)
$C_{1} = C_{1} = C_{2}$	120.17(10) 117.85(10)	$N_2 = C_17 = C_{19}$	107.78(10) 111.8(2)
C6 C5 H5	117.05 (19)	12 - 17 - 18	111.0(3)
C_{0}	121.1	N2 C17 H17	112.9 (2)
C5 C6 N1	121.1 121.5(2)	12 - (17 - 117)	108.1
C_{5}	121.3(2) 120.8(2)	$C_{19} = C_{17} = H_{17}$	108.1
$C_{3} = C_{0} = C_{7}$	150.8(2) 107.74(18)	$C_{10} - C_{17} - C_{18} - U_{18A}$	108.1
$\frac{1}{2} \frac{1}{2} \frac{1}$	107.74(10) 106.74(10)	C17 = C10 = D10A	109.5
04 - 07 - 05	100.74 (19)		109.5
0 - 0 - 0	113.41 (19)		109.5
03 - 0 / - 00	109.87 (18)	$U_1/-U_1\delta$ -H18U	109.5
04-07-08	114.8 (2)	н18А—С18—Н18С	109.5

O5—C7—C8	109.14 (19)	H18B—C18—H18C	109.5
C6—C7—C8	102.82 (19)	C24—C19—C20	117.9 (2)
C9—C8—C7	105.3 (2)	C24—C19—C17	121.5 (2)
С9—С8—Н8А	110.7	C20—C19—C17	120.6 (2)
С7—С8—Н8А	110.7	C21—C20—C19	120.9 (2)
С9—С8—Н8В	110.7	С21—С20—Н20	119.6
С7—С8—Н8В	110.7	С19—С20—Н20	119.6
H8A—C8—H8B	108.8	C22—C21—C20	120.4 (3)
N1—C9—C8	103.28 (19)	C22—C21—H21	119.8
N1—C9—H9A	111.1	C20—C21—H21	119.8
С8—С9—Н9А	111.1	C21—C22—C23	119.9 (3)
N1—C9—H9B	111.1	C21—C22—H22	120.0
С8—С9—Н9В	111.1	С23—С22—Н22	120.0
Н9А—С9—Н9В	109.1	C22—C23—C24	120.7 (3)
O6—C10—N1	121.4 (2)	С22—С23—Н23	119.6
O6—C10—C11	124.9 (2)	С24—С23—Н23	119.6
N1—C10—C11	113.73 (18)	C19—C24—C23	120.1 (3)
C4—C11—C10	121.9 (2)	C19—C24—H24	119.9
C4—C11—C1	122.42 (19)	C23—C24—H24	119.9
C10-C11-C1	115.64 (17)		
$C^{2}-O^{1}-C^{1}-C^{1}$	19.3 (3)	C6-N1-C9-C8	-9.5(2)
$C_{1} = 0_{1} = C_{1} = 0_{1}$	17.3(3)	$C_{0} = N_{1} = C_{0} = C_{0}$	(2)
$C_1 = 0_1 = C_2 = 0_2$	-10(3)	C7 - C8 - C9 - N1	170.22(10)
$C_1 = 0_1 = 0_2 = 0_3$	-68.2(2)	$C_{1} = C_{1} = C_{1} = C_{1}$	-17830(19)
$C_{10} = 05 = 03 = 04$	58.3 (2)	$C_{0} = N_{1} = C_{10} = C_{0}$	1 0 (3)
$C_{10} = 03 = C_{3} = C_{2}$	173 30 (18)	$C_{2} = N_{1} = C_{10} = C_{10}$	1.9(3)
$0^{2}-0^{2}-0^{3}-0^{3}$	38.1.(3)	$C_{0} = N_{1} = C_{10} = C_{11}$	-17668(18)
$0_2 - 0_2 - 0_3 - 0_3$	-1467(2)	$C_{2} = N_{1} = C_{10} = C_{11}$	-5.0(3)
$0^{2} - 0^{2} - 0^{3} - 0^{3}$	140.7(2)	$C_{3} = C_{4} = C_{11} = C_{10}$	5.0(5)
$0_2 - 0_2 - 0_3 - 0_4$	-21.4(2)	$C_{5} = C_{4} = C_{11} = C_{10}$	171.09(18)
01 - 02 - 03 - 04	-73.2(3)	$C_3 = C_4 = C_{11} = C_1$	-82(3)
$0_2 - 0_2 - 0_3 - 0_{14}$	102.0(2)	$C_{5} = C_{4} = C_{11} = C_{12}$	-176 1 (2)
01 - 02 - 03 - 014	102.0(2)	N1 C10 C11 C4	1/0.1(2)
$C_{2} = C_{3} = C_{4} = C_{11}$	150.41(10)	$06 \ C10 \ C11 \ C1$	2.3(3)
$C_2 = C_3 = C_4 = C_{11}$	23.7(3)	N1 C10 C11 C1	3.0(3)
$C_{14} - C_{5} - C_{4} - C_{11}$	-90.2(2)	$\mathbf{N} = \mathbf{C} \mathbf{I} = \mathbf{C} \mathbf{I} = \mathbf{C} \mathbf{I}$	-1/7.03(18) -14.4(2)
$C_{2} = C_{3} = C_{4} = C_{5}$	-32.9(3) -15767(18)	01 - 01 - 01 - 04	-14.4(3)
$C_2 - C_3 - C_4 - C_3$	-137.07 (18)	$C_{7} = C_{1} = C_{10}$	-21.7(2)
$C_{14} = C_{3} = C_{4} = C_{3}$	80.4(2)	C7 = 03 = C12 = C13	-31.7(3)
C11 - C4 - C5 - C6	2.0 (5)	$C_{1} = 04 = C_{13} = C_{12}$	-3.3(3)
$C_{3} - C_{4} - C_{5} - C_{6}$	-1/4.38(19)	03 - 012 - 013 - 04	21.3(3)
C4 = C5 = C6 = C7	3.3(3)	$C_{4} = C_{5} = C_{14} = C_{15}$	-170.4(2)
$C_4 - C_5 - C_6 - C_7$	-1/4.3(2)	C4 - C3 - C14 - C15	70.9 (3)
C10 N1 $C(-C5)$	-0.0(3)	$C_2 = C_3 = C_1 4 = C_{13}$	-34.0(3)
$C_{9} = N_{1} = C_{0} = C_{3}$	1/3.7(2) 172.05(18)	C17 = N2 = C16 = O7	-4.0(4)
C10 N1 $C(-C7)$	172.05 (18) 8.2 (2)	C1/-N2-C16-O3	1/4.3(2)
C_{7} N1 $- C_{0}$ $- C_{1}$	-0.5(2)	$C_{3} = 0_{3} = 0_{10} = 0_{10}$	-10.1(3)
$C_{13} = 04 = 07 = 03$	-10.4(3)	$C_{1} = 0_{2} = 0_{10} = 0_{10} = 0_{10}$	1/0.69 (18)
13 - 04 - 07 - 06	104.7 (2)	10 - N2 - 017 - 019	-100.5(2)
C13—O4—C/—C8	-137.5 (2)	C16—N2—C17—C18	68.9 (3)

C12—O5—C7—O4	30.5 (3)	N2-C17-C19-C24	99.6 (3)
C12—O5—C7—C6	-92.8 (2)	C18-C17-C19-C24	-136.5 (3)
C12—O5—C7—C8	155.1 (2)	N2-C17-C19-C20	-77.4 (3)
C5—C6—C7—O4	-35.3 (3)	C18—C17—C19—C20	46.5 (3)
N1—C6—C7—O4	146.85 (19)	C24—C19—C20—C21	0.9 (4)
C5—C6—C7—O5	84.0 (3)	C17—C19—C20—C21	177.9 (2)
N1—C6—C7—O5	-93.8 (2)	C19—C20—C21—C22	-1.3 (4)
C5—C6—C7—C8	-159.9 (2)	C20-C21-C22-C23	0.8 (4)
N1—C6—C7—C8	22.3 (2)	C21—C22—C23—C24	0.0 (5)
O4—C7—C8—C9	-151.2 (2)	C20—C19—C24—C23	0.0 (4)
O5—C7—C8—C9	89.0 (2)	C17—C19—C24—C23	-177.1 (3)
C6—C7—C8—C9	-27.6 (2)	C22—C23—C24—C19	-0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N2—H2···O6 ⁱ	0.88	2.11	2.988 (2)	173
Symmetry codes: (i) $x, y, z-1$.				

Fig. 1

